Evaluation of mitigation measures to reduce hydropeaking impacts on river ecosystems - a case study from the Swiss Alps.
نویسندگان
چکیده
New Swiss legislation obligates hydropower plant owners to reduce detrimental impacts on rivers ecosystems caused by hydropeaking. We used a case study in the Swiss Alps (hydropower company Kraftwerke Oberhasli AG) to develop an efficient and successful procedure for the ecological evaluation of such impacts, and to predict the effects of possible mitigation measures. We evaluated the following scenarios using 12 biotic and abiotic indicators: the pre-mitigation scenario (i.e. current state), the future scenario with increased turbine capacity but without mitigation measures, and future scenarios with increased turbine capacity and four alternative mitigation measures. The evaluation was based on representative hydrographs and quantitative or qualitative prediction of the indicators. Despite uncertainties in the ecological responses and the future operation mode of the hydropower plant, the procedure allowed the most appropriate mitigation measure to be identified. This measure combines a basin and a cavern at a total retention volume of 80,000m3, allowing for substantial dampening in the flow falling and ramping rates and in turn considerable reduction in stranding risk for juvenile trout and in macroinvertebrate drift. In general, this retention volume had the greatest predicted ecological benefit and can also, to some extent, compensate for possible modifications in the hydropower operation regime in the future, e.g. due to climate change, changes in the energy market, and changes in river morphology. Furthermore, it also allows for more specific seasonal regulations of retention volume during ecologically sensitive periods (e.g. fish spawning seasons). Overall experience gained from our case study is expected to support other hydropeaking mitigation projects.
منابع مشابه
Operation of complex hydropower schemes and its impact on the flow regime in the downstream river system under changing scenarios
ii glacierization of the upper Aare River basin is simulated for the late 21 century. The resulting reduction of glacier melt in summer and earlier snowmelt in spring change the runoff regime from glacio-nival to nival. The implemented heuristic hydropower modeling tool in Routing System allows simulation of the operating mode of complex HPP. Within the case study of the upper Aare River catchm...
متن کاملImpact of Hydropeaking on Fish and their Habitat
ii In the Hasliaare River system, the joint effect of hydropeaking and channelization on young-of-the-year, lake and stream resident spawning brown trout were studied. Steady and dynamic habitat conditions were evaluated and the habitat was modeled for three different degraded morphologies. Specific preference curves for each investigated life stage were developed. Moreover, the reproduction su...
متن کاملSnow pack in the Swiss Alps under changing climatic conditions: an empirical approach for climate impacts studies
In many instances, snow cover and duration are a major controlling factor on a range of environmental systems in mountain regions. When assessing the impacts of climatic change on mountain ecosystems and river basins whose origin lie in the Alps, one of the key controls on such systems will reside in changes in snow amount and duration. At present, regional climate models or statistical downsca...
متن کاملQuantifying Process-Based Mitigation Strategies in Historical Context: Separating Multiple Cumulative Effects on River Meander Migration
Environmental legislation in the US (i.e. NEPA) requires defining baseline conditions on current rather than historical ecosystem conditions. For ecosystems with long histories of multiple environmental impacts, this baseline method can subsequently lead to a significantly altered environment; this has been termed a 'sliding baseline'. In river systems, cumulative effects caused by flow regulat...
متن کاملDraught and its economic consequences in rural area Case: Dodangeh district Behbahan
Introduction: Draught is being considered as a climatic reality in arid and semi-arid regions such as Iran. Drought is capable of generating drastic impacts over water and soil resources, vegetation, animals and human beings. Water is a prominent factor as far as agricultural product is concerned specially in arid zones. Draught and its impact on water resources will bear unpleasant conseque...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Science of the total environment
دوره 574 شماره
صفحات -
تاریخ انتشار 2017